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We calculate the charge and spin Drude weight of the one-dimensional extended Hubbard model with on-site
repulsion U and nearest-neighbor repulsion V at quarter filling using the density-matrix renormalization-group
method combined with a variational principle. Our numerical results for the Hubbard model �V=0� agree with
exact results obtained from the Bethe ansatz solution. We obtain the contour map for both Drude weights in the
UV-parameter space for repulsive interactions. We find that the charge Drude weight is discontinuous across
the Kosterlitz-Thouless transition between the Luttinger liquid and the charge-density-wave insulator, while the
spin Drude weight varies smoothly and remains finite in both phases. Our results can be generally understood
using bosonization and renormalization-group results. The finite-size scaling of the charge Drude weight is
well fitted by a polynomial function of the inverse system size in the metallic region. In the insulating region,
we find an exponential decay of the finite-size corrections with the system size and a universal relation between
the charge gap �c and the correlation length � which controls this exponential decay.
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I. INTRODUCTION

The transport properties of low-dimensional strongly cor-
related electron systems are currently a subject of great in-
terest because of recent experimental observations in quasi-
one-dimensional �quasi-1D� materials and because of their
connection to the rapidly evolving field of nonequilibrium
physics in strongly correlated quantum systems.1 Most stud-
ies of transport properties in one-dimensional quantum
many-body systems have been within the linear-response
theory.2 One fundamental quantity is the Drude weight de-
fined as the zero-frequency contribution to the real part of the
conductivity. Thus a finite Drude weight implies ballistic
transport, and it has been proposed as a criterion for distin-
guishing metallic and insulating phases in a Mott transition.3

Experiments on quasi-one-dimensional organic conduc-
tors4 show large deviations from the predictions of band
theory. According to previous studies, the intersite Coulomb
repulsion plays a crucial role in these materials.5 Therefore,
the most simple effective model for their electronic proper-
ties is a one-dimensional extended Hubbard model. In such
one-dimensional models of interacting fermions, the quasi-
particle concept breaks down, and the properties of the sys-
tem do not resemble those of a Fermi liquid. Instead, low-
energy excitations are made of independent elementary
excitations for spins �spinons� and charge �holons�.6,7 More-
over, the space- and time-dependent correlation functions
display unusual power-law decays. Their exponents are not
universal but depend on the strength of the interaction. One-
dimensional metallic systems belong to the generic class of
Tomonaga-Luttinger liquids �TLL�.8–11 Their characteristic
quantities are the so-called TLL parameters v�, v�, K�, and
K�. Here v� and v� are the velocity of charge and spin exci-
tations, respectively, and K� and K� determine the algebraic
decay of correlation functions.

Recently, the discovery of the colossal magnetic heat
transport in spin ladder materials, such as
�Sr,Ca,La�14Cu24O41, where the magnetic contribution to
the total thermal conductivity exceeds the phonon contribu-
tion substantially, has sparked interest in transport properties
of quasi-1D spin models.12–14 Understanding the transport
properties of theoretical models is of great importance for the
interpretation of transport or NMR measurements, but it is
still an open problem for quantum systems involving many
coupled degrees of freedom.1,15 Therefore, the development
of methods for computing transport properties such as the
Drude weight in strongly correlated systems and the investi-
gation of theses properties are much anticipated.

In this paper we study the charge and spin Drude weight
of the one-dimensional extended Hubbard model at quarter
filling using the density-matrix renormalization-group
�DMRG� method with periodic boundary conditions. This
model is known to be “nonintegrable” for general values of
the parameters16 and thus not amenable to an exact calcula-
tion of the Drude weight contrary to the Hubbard model.17

Investigations based on the g-ology,8 bosonization,18–20 and
the renormalization group21,22 have provided analytic insight,
particularly, in the weak-coupling regime. Both exact
diagonalization23–27 calculations and quantum Monte Carlo
simulations28 have clarified a number of questions at inter-
mediate and strong coupling. In the last decade, the DMRG
method has been successfully used to investigate many prop-
erties of one-dimensional strongly correlated lattice mod-
els,29,30 but a precise calculation of charge and spin Drude
weights has not been reported yet. Therefore, we still lack a
comprehensive picture of ballistic transport in the one-
dimensional extended Hubbard model.

Our paper is organized as follows. In Sec. II, we summa-
rize some properties of the extended Hubbard model and its
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ground-state phase diagram and introduce the charge and
spin Drude weight. In Sec. III, we explain the DMRG-based
method for calculating the Drude weight. Our results for the
thermodynamic limit are presented in Sec. IV A and the
finite-size scaling is discussed in detail in Sec. IV B. Finally,
we summarize our work in the last section.

II. MODEL AND DRUDE WEIGHT

We study the one-dimensional extended Hubbard model
which is defined by the Hamiltonian

H = Ht + HU, �1�

Ht = − t�
l,�

�cl,�
† cl+1,� + cl+1,�

† cl,�� , �2�

HU = U�
l

nl,↑nl,↓ + V�
l

nlnl+1, �3�

where cl,�
† �cl,�� is the creation �annihilation� operator for an

electron with spin ��=↑ ,↓� at site l=1, . . . ,L, nl,�=cl,�
† cl,� is

the density operator, and nl=nl,↑+nl,↓. We use periodic
boundary conditions throughout. t�0 is the nearest-neighbor
hopping integral along the chain, U�0 is the onsite Cou-
lomb interaction, and V�0 is the nearest-neighbor Coulomb
interaction. A quarter-filled band corresponds to a system
with N=L /4 electrons of each spin, a Fermi wave vector
kF= �

4 , and a Fermi velocity vF=2t sin�kF�=�2t in the Fermi
gas �U=V=0�.

This model has been studied extensively by a variety of
techniques. It is known to be “nonintegrable” for general
values of the parameters16 on the basis of energy-level sta-
tistics, although exact results can be obtained in three limits
�V=0, U= +� , V= +��. For V=0, the model becomes the
regular Hubbard model. At quarter filling, it is known to be
metallic31 with dominant 2kF-spin-density-wave �SDW� fluc-
tuations, and its low-energy excitations are of the TLL type.
For U= +�, the quarter-filled electron model is equivalent to
a half-filled spinless fermion model which upon increasing V
from zero undergoes a phase transition from a TLL phase to
a 4kF-charge-density-wave �CDW� insulator at V=2t.32 For
V= +�, onsite electron pairs cannot move, while the un-
paired electrons have the same kinetic energy as spinless
fermions interacting with an infinitely strong nearest-
neighbor repulsion. This system has a Bethe ansatz
solution.24,25,33,34 It is a 4kF-CDW insulator for U�Uc=4t,
whereas it is phase separated for U	Uc. In the weak-
coupling limit �U ,V
 t�, the model can be mapped onto a
g-ology model and investigated using bosonization and
renormalization-group techniques.8,18–22

The ground-state phase diagram of the quarter-filled ex-
tended Hubbard model for repulsive interactions was first
determined using exact diagonalizations.24 Recently, the pre-
cise ground-state phase diagram and the TLL exponent K�

have been obtained for a wide region of the UV-parameter
space using the DMRG method.30 These results are summa-
rized in Fig. 1, where four different phases are represented:
�I� a metallic phase with 1 /3�K��1 where the system has

dominant 2kF-SDW fluctuations, �II� a metallic phase with
1 /4�K��1 /3 where the system has dominant 2kF-CDW
fluctuations, �III� a metallic phase �K��1� where the system
has dominant superconducting fluctuations, and �IV� an in-
sulating phase �i.e., with a finite charge gap� where the sys-
tem has a long-range-ordered 4kF CDW. All four phases
have gapless spin excitations.24–26 Finite spin gaps have been
reported in previous exact diagonalization studies for large V
in phase �III�, but our DMRG calculations indicate that the
spin gap vanishes in the thermodynamic limit at least for all
V�10t. On the metal-CDW transition line K�=1 /4. It has
been reported that this transition is of the Kosterlitz-Thouless
type,26 and higher-order scattering processes, including the
8kF-umklapp scattering via the upper band around �3kF,
play a crucial role in the weak-coupling theory of the phase
diagram.7,19,20,35

Let us consider external fields � and � which modify
the kinetic energy

Ht��,�� = − t�
l,�

�ei��+���/Lcl+1,�
† cl,� + H.c.� . �4�

� is the magnetic flux threading the system and � is the
magnetic flux given by a fictitious spin-dependent vector
potential.36 Time-dependent fields � generate a charge ��
=�� or spin ��=�� current �J�� in the system. Within the
linear-response theory, the charge and spin conductivities
have the form15,37–40

Re ����� = �D����� + ��
reg��� , �5�

where ��
reg��� is assumed to be regular at �=0. The coeffi-

cient D��D�� of the � function ���� is called charge �spin�
Drude weight for the ballistic transport and is given by
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FIG. 1. The phase diagram of the t-U-V model at quarter filling
determined from DMRG calculations in Ref. 30. In region �i�,
1 /3	K�	1 and 2kF-SDW correlations are dominant. Region �II�
is characterized by dominant 4kF-CDW correlation and 1 /4	K�

	1 /3. In region �III�, triplet pairing correlations dominate because
of K��1. The regions �i�, �II�, and �III� are metallic states, while
region �IV� is an insulating state with 4kF charge ordering.
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D� = SK + S� = −
1

2L
��0�Ht��0� −

1

L
�

n

���n�J���0��2

En − E0
, �6�

where �n denotes an eigenstate of H with energy En and the
ground state corresponds to n=0. The first term �up to the
prefactor −1 /2L� is the total kinetic energy, while the second
term �up to a prefactor −� /2� is the total spectral weight of
the incoherent part ��

reg��� of the conductivity and describes
the reduction in the Drude weight caused by incoherent-
scattering processes. The charge and spin current operators
are J�=�i j�,i with local current operators defined from the
continuity equation

i�H,d�,l	 + j�,l+1 − j�,l = 0, �7�

where d�,l=nl and d�,l=nl,↑−nl,↓. In our model, the precise
form of j�,l is

j�,l = − it�
�

cl+1,�
† cl,� + H.c., �8�

j�,l = − it�
�

��cl+1,�
† cl,� + H.c.� . �9�

The above spin current operator is different from the one
used in spin models.15,41 Nevertheless, the spin Drude
weights defined for an electron system or for a spin system
have the same physical meaning because they characterize
the response of the spin degrees of freedom to the same
external perturbation. The spin Drude weight D� is thus de-
fined as a precise analog of the charge Drude weight D�.
Therefore, a value D��0 simply means that the system is an
ideal spin conductor, so that the spin transport is not
diffusive.37

Obviously, charge and spin Drude weight are equivalent
in the noninteracting electron gas �U=V=0� because the sec-
ond term of Eq. �6� vanishes. Assuming that the low-energy
excitation of our model can be expressed by the TLL theory,
the charge and spin Drude weight can be represented by11

D� = v�K�/� , �10�

where v��v�� is the renormalized charge �spin� velocity and
K��K�� is the renormalized TLL exponent of charge �spin�
mode. In our model, the renormalized value of K� is K�=1
because the system has a SU�2� spin symmetry and there is
no spin gap in the repulsive parameter region. Thus, �D�

=v�. On the other hand, the behavior of D� is more compli-
cated because v� and K� depend on the interaction param-
eters.

III. DMRG METHODS FOR DRUDE WEIGHTS

A method for calculating the Drude weight �6� with
DMRG was introduced several years ago29 but has been
rarely used until now. In this section, we briefly summarize
our implementation of this numerical method and discuss
some technical details.

The first term of Eq. �6� can be easily calculated using the
ground-state DMRG method. The second term can be calcu-
lated by targeting the correction vector ��� which is solution
of

�H − E0���� = J���0� . �11�

The best implementation of this idea is a variational principle
similar to the one used for the calculation of dynamical cor-
relation functions.42,43 One considers the functional

W���� = ����H − E0���� − �J���� − ���J�� . �12�

If the ground state is not degenerate, this functional has a
unique minimum for the quantum state which is the solution
of Eq. �11�. It is easy to show that the value of the minimum
is related to the second term of Eq. �6�,

W���min� = − �
n

���n�J���0��2

En − E0
. �13�

Our method consists in calculating the ground state and then
minimizing this functional with DMRG. Note that this ap-
proach does not work for systems with a degenerated ground
state. Therefore, we always choose appropriate system sizes
L and numbers of electrons N to get a nondegenerate ground
state.

Another approach for obtaining the Drude weight with
DMRG is to compute the dynamical current-current correla-
tion function

C�,���� = − ��0�J�

1

� + E0 − H + i�
J���0� , �14�

using the dynamical DMRG �DDMRG� method.42,43 The
imaginary part of this quantity satisfies

1

�
lim
�→0

Im C�,���� = ��
reg��� , �15�

which has been previously used to study the optical absorp-
tion of various one-dimensional insulators including the ex-
tended Hubbard model at half filling.44 The real part of the
correlation function yields

lim
�→0

Re C�,��0� = �
n

���n�J���0��2

En − E0
, �16�

which can be expected from the Kramers-Kronig relation
with the f-sum rule of conductivity. Therefore, one can in
principle calculate the second term of Eq. �6� using
DDMRG. However, a DMRG calculation using Eqs. �12�
and �13� is faster and more accurate than a DDMRG calcu-
lation of Eqs. �14� and �15�. In the first approach, the error in
the value of the minimum W���min� is on the order of �2 if
we can calculate target states with an error of the order �

1 within DMRG. With the DDMRG method, the error in
the real part of C�,���� is on the order of � �see the discus-
sion in Refs. 42 and 43�.

As originally noted by Kohn,3 the Drude weight �6� can
be calculated from the dependence of the ground-state en-
ergy on the applied field � using

D� = L
 �2E0���
��

2 

�=0

. �17�

Therefore, one can calculate the Drude weight with DMRG
using Eq. �17�. This approach has been demonstrated on the
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spinless fermion model,29,45 but it requires treating complex
Hamiltonians and performing a numerically delicate second
derivative of the ground-state energy with respect to �.
Therefore, we have chosen the approach based on the varia-
tional principle �12� and on Eq. �13�.

IV. RESULTS

We have carried out DMRG calculations for quarter-filled
chains with periodic boundary conditions and lengths up to
L=60. The investigated system lengths are given by L=8l
+4 with integers l�1 so that the number of electrons of each
spin �N=L /4� is odd. Thus the ground state has momentum
P=0 and is not degenerate. We have kept up to m�3200
density-matrix eigenstates in the DMRG procedure. The dis-
carded weights are typically on the order 10−6�10−8 and the
ground-state energy accuracy is �10−4t. All energies and
physical quantities are extrapolated to the limit m→�.

A. Thermodynamic limit

We first discuss the DMRG results extrapolated to the
thermodynamic limit �L→��. The finite-size scaling is dis-
cussed in the next subsection. Contour maps of the charge
and spin Drude weights are shown in Fig. 2. We can sum-
marize our main results in five points. �i� Both D� and D�

have their maximum D�=vF /�=�2t /� at the noninteracting
point �U=V=0� and decrease monotonically as a function of
increasing U and V. �ii� Excepted for the noninteracting
point, we observe a difference between D� and D�. �This is
due to the well-known spin-charge separation, which is a
typical property in one-dimensional systems.� �iii� The
charge Drude weight has no linear correction around the
noninteracting point �D� /�U=�D� /�V=0 at U=V=0. �iv�
The charge Drude weight is larger than the spin Drude
weight in the metallic phase. �v� D� seems to be discontinu-
ous at the metal-insulator transition. To understand these fea-
ture, we will discuss the behavior of both Drude weights
along the lines V=0, U=0, and U=10t in more detail below.

Our DMRG calculation results for V=0 can be compared
with the exact Drude weights D�

exact obtained from the Bethe
ansatz solution of the Hubbard model17 as shown in Fig. 3.
Relative errors �D�

exact−D�
DMRG� /D�

exact are below 10−4 for
each system size L�60 using up to 3000 density-matrix
states. We note that the charge Drude weight is larger than
the spin Drude weight for all U�0 in Fig. 3. The reduction
in both Drude weights for finite interactions can be under-
stood qualitatively. The kinetic-energy term SK in Eq. �6� is
maximal for noninteracting electrons �U=V=0� and de-
creases monotonically when U �or V� increases. The second
term S� in Eq. �6� equals 0 at the noninteracting point and
can only decrease to negative values for U�0 �or V�0�.
�Note that S� is not a monotonic function of U and V. It has
a minimum at finite interactions as it converges to zero in the
strong-coupling limit.� Therefore, the decrease in the Drude
weight is due to both the suppression of the kinetic energy
and the appearance of scattering processes.

In Fig. 3 we can see in both our DMRG results and the
exact Bethe ansatz results that D� has no linear correction in

U close to the noninteracting point �U=0�, whereas D�

seems to have a linear correction in U. This weak-coupling
behavior has already been discussed.7,46,47 The renormalized
value of K� is always K�=1 because there is no spin gap for
the parameters investigated here. Therefore, the lowest-order
correction to D� yields D�=vF /�−U / �2�2vF�, which is also
consistent with the Bethe ansatz result.48 The behavior of K�

is more complicated.7,30 There is no first-order correction
from the interaction U and thus if we neglect the irrelevant

FIG. 2. Contour map for �a� the charge Drude weight D� and �b�
the spin Drude weight D� in the UV-parameter space of the ex-
tended Hubbard model at quarter filling. The bold line represents
the boundary of the metal-insulator transition determined from K�

in Ref. 30.

µ

µ ρ
µ σ

µ ρ
µ σ

FIG. 3. �Color online� Charge Drude weight D� and spin Drude
weight D� as a function of U in the Hubbard model �V=0�. Lines
show the exact results from the Bethe ansatz solution.
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incommensurate 4kF-umklapp scattering46 and higher-order
corrections in U,19 D�=v�K� /�=vF /�. To understand the
decrease of D�, the effect of the irrelevant 4kF-umklapp scat-
tering has to be taken into account. This correction is second
or higher order in the interaction and explains the nonlinear
decrease of D�. Note that if we neglect the irrelevant
4kF-umklapp scattering but take higher-order corrections in
U into account �see Ref. 19�, D� increases, which contradicts
both our numerical results and the Bethe ansatz results. Thus,
though those higher-order corrections are important for
qualitatively understanding the phase diagram of this model,
they are not sufficient for a quantitative analysis.

In the strong-coupling limit U→�, we expect the follow-
ing behavior: D� approaches the value t /� because v�

→2t sin 2kF=2t and K�→1 /2, while D� goes to 0 because
v��O�1 /U�. Therefore, along the V=0 line, D� is larger
than D� in both the U→0 and U→� limits and our DMRG
results show that this relation holds also for all finite U�0.

Results for the U=0 line of the UV-parameter space are
shown in Fig. 4�a�. Again we clearly see that both Drude
weights decrease monotonically with increasing interaction
and that the spin Drude weight is less than the charge Drude
weight for all V�0. In that case, however, it seems that both
Drude weights have no linear correction in V at the nonin-
teracting point �U=V=0�. This is consistent with the weak-
coupling theory which yields no correction to v�K� or v� in
the first order in V.11 The faster reduction of D� with increas-
ing V is due to the much stronger incoherent-scattering pro-
cesses for spin excitations than for charge excitations, which
is demonstrated by the larger second term S� of Eq. �6� as
shown in Fig. 4�b�.

We also find that S� /SK increases in the Luttinger liquid
phase �III� with dominant superconducting correlations,
which occurs for V�7.5t. This is an unusual behavior for
this “superconducting” phase because S� /SK=0 for a true
superconductor.49 In the V→� limit, both Drude weights go
to zero because the system becomes phase separated at V
=� for U=0. The lattice is decomposed in finite-size do-
mains of singly occupied or empty sites with an average

electronic density 	1 /2. These domains are separated by
impenetrable immobile walls �the doubly occupied sites�.
There is a finite density of such pairs for small U because
they reduce the average density on the other sites below 1/2
and thus allow them to gain kinetic energy. The charge
Drude weight is zero despite the finite kinetic energy �i.e.,
SK�0 in Eq. �6�	 because charge motion is confined to finite
domains by the infinite walls.50 Therefore, there are only
incoherent contributions to the charge conductivity and
S�=−SK. The spin Drude weight must also vanish for this
reason and also because the infinite nearest-neighbor interac-
tion V prohibits the formation of any nearest-neighbor elec-
tron pairs and thus the effective magnetic interaction is
zero.24,25

Exact diagonalization studies24 have shown that the com-
pressibility �� increases with V in this “superconducting”
region and seems to diverge when approaching the phase-
separation regime for V→�. As within the TLL approach the
compressibility can be characterized by ��=2K� /�v�, the
divergence of �� has been interpreted as a divergence of K�.
However, our DMRG calculations show that D�=v�K� /� de-
creases as V becomes very large. Thus v� goes to zero faster
than K� diverges toward � �if it diverges� and we conclude
that the divergence of �� is mostly due to the vanishing of
the charge velocity for V→�. Unfortunately, it is difficult to
compute K� using the DMRG method close to the phase-
separation regime. Thus we cannot determine whether K�

diverges to � or converges to a finite value.
Our results for the U=10t line are shown in Fig. 5. As V

increases, there is a phase transition from the metallic state to
the 4kF-CDW insulating state at Vc / t�2.74.30 In the metallic
phase, both Drude weights decrease when V increases and
we always find D��D� as discussed previously. The spin
Drude weight changes smoothly and remains finite for all
values of the interaction parameters that we have investi-
gated. As seen in Fig. 5, the charge Drude weight approaches
a finite value when V→Vc from the metallic side. As D�

=0 in the insulating phase for V�Vc, we conclude that the
charge Drude weight jumps from a finite value to zero at the
metal-insulator transition. Therefore, D� is a discontinuous
function of the interaction parameters. Note that the finite
system D��L� calculated with DMRG are smooth functions

µ

µ ρ
µ σ

µ

FIG. 4. �Color online� �a� The charge Drude weight D� and spin
Drude weight D� as a function of V along the U=0 line. �b� The
ratio S� /SK where SK and S� are the first term and second term in
Eq. �6�, respectively. Vertical lines show the boundary between the
Luttinger liquid phases with dominant SDW �i� and pairing �III�
fluctuations. Other lines are guides for the eyes.

0 2 4 6 8 10
V/t

0

0.1

0.2

0.3

0.4

D
µ/t

µ = ρ
µ = ρ, L = 60
µ = σ

(I) (II) (IV)

FIG. 5. �Color online� The charge Drude weight D� and spin
Drude weight D� as a function of V along the U=10t line. Squares
and circles are results extrapolated to the thermodynamic limit. Dia-
monds show finite-system results �L=60�. The solid vertical line is
the phase boundary between the metallic and insulating �IV� states
determined by the calculation of K� in Ref. 30. The dashed vertical
line marks the boundary between the Luttinger liquid regions with
dominant SDW �i� and CDW �II� fluctuations.
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of the parameters �see Fig. 5� and from the finite-size scaling
analysis alone one cannot determine whether D� has a jump
at V=Vc �this will be discussed in detail in the next subsec-
tion�. The transition from the metallic to the insulating phase
is believed to be of the Kosterlitz-Thouless type and to be
caused by the 8kF-umklapp scattering.19,20 This scattering is
different from the usual 4kF-umklapp scattering which re-
duces the charge velocity v� in renormalization-group calcu-
lations and is always irrelevant.46,47 Therefore, both v� and
K� are renormalized to a finite value when approaching the
phase boundary from the metallic side in the renormal-
ization-group analysis.

Unfortunately, our simulations show that it is difficult to
determine the phase boundary using the discontinuity in D�.
We believe that the direct calculation of K� from correlation
functions30 is a more efficient approach for determining
phase boundaries within DMRG computations because the
extrapolation to infinite system size is less difficult than for
the Drude weights. This will be discussed in the following
subsection.

In the strong-coupling limit of the insulating CDW phase
�IV� electrons are localized and there is an effective
Heisenberg-type interaction between their spins. The effec-
tive exchange interaction Jeff between nearest-neighbor spins
can be derived from perturbation theory and we obtain up to
fourth order Jeff� t4 /UV2. In a Heisenberg model, D� is pro-
portional to the exchange interaction. Therefore we expect
D�=Ct4 /UV2 in the strong-coupling limit of our electronic
model, where C is an unknown constant. In Fig. 6 we show
our numerical results for the strong-coupling limit on a
double-logarithmic scale. One can clearly see a linear
asymptotic behavior log�D� / t�=log�C�−log�UV2 / t3� for
large U / t and V / t in agreement with the strong-coupling
analysis.

B. Finite-size scaling

With DMRG we have been able to investigate much
larger system sizes than in studies based on the exact diago-
nalization method.23–27 Finite-size effects are thus smaller
than in these previous studies, and in most cases we can
perform a reliable finite-size scaling analysis of DMRG re-
sults for finite chains with periodic boundaries and extrapo-
lated to the limit of infinitely long chains. Nevertheless, there
are some difficulties close to phase boundaries as usual and it

is always informative to examine finite-size corrections.
Figure 7�a� shows the spin Drude weight D��L� as a func-

tion of inverse system length 1 /L for several parameter sets.
We note that D��L� decreases monotonically and smoothly
with increasing L and also that it converges to a finite value
and seems to be a convex function of 1 /L for L→� both in
the metallic and in the insulating phase. This finite-size scal-
ing reflects the absence of gap in the spin sector and the
complete separation of low-energy spin and charge excita-
tions in the quarter-filled extended Hubbard model for U ,V
�0. We can extrapolate the Drude weight to the thermody-
namic limit systematically by performing a polynomial fit in
1 /L. We find that the extrapolation is always very well be-
haved as seen from Fig. 7�a�. Especially, the relative errors
are small, i.e., the difference between the extrapolated value
D� and the value of D��L� for the largest system size L
computed with DMRG is small compared to D�.

Figure 7�b� shows the charge Drude weight D��L� as a
function of inverse system length 1 /L for several parameter
sets in the metallic phase. As expected, D��L� converges to a
finite value for L→�. As for the spin Drude weight, we find
that finite-size corrections are positive and depend smoothly
on L and that D��L� seems to be a convex function of 1 /L for
L→�. Again such a finite-size scaling reflects the absence of
gap in the charge sector in this part of the phase diagram. We
can extrapolate D��L� to the thermodynamic limit systemati-
cally using a polynomial fit in 1 /L. This extrapolation is very
accurate as demonstrated by the comparison with the exact
results obtained from the Bethe ansatz for the Hubbard
model �see Fig. 3�. We note, however, that leading finite-size
corrections are linear in 1 /L in the U�V�0 region of the
parameter space, whereas they are on the order of 1 /L2 in the
Hubbard model.17 In the V�U region, we find that finite-
size corrections to D� are much smaller than for U�V re-
gion and that the leading term seems to be again on the order
L−2 as can be seen for U=0, V=5t in Fig. 7�b�.

In Fig. 8�a� we show the charge Drude weight D��L� in
the insulating phase as a function of the system length L for

−3.0 −2.5 −2.0 −1.5 −1.0
−2.1

−1.8

−1.5

−1.2

−0.9

−

σ

−

FIG. 6. Spin Drude weight D� vs −log�UV2 / t3� in the strong-
coupling region. Solid lines are guides for the eyes.

ρ
σ

FIG. 7. �Color online� �a� Spin Drude weight D� as a function of
inverse system length 1 /L for several parameter sets in the metallic
phase �filled symbols� and in the insulating phase �open symbols�.
Lines are polynomial fits. �b� Charge Drude weight D� for several
parameter sets in the metallic phase. Lines are polynomial fits.
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several parameter sets. The linear behavior observed in this
semilog plot indicates that D��L� decreases exponentially
with increasing L as in the Hubbard model at half filling.17

The correlation length � which characterizes this exponential
decay log�D��L� / t	=−L /� depends upon U and V. �We set
the lattice constant a=1.� Near the metal-insulator phase
boundary, one expects that �−1 should vanish as the charge
gap �c. In particular, in the half-filled Hubbard model, it has
been shown that �−1=�c /2t=�c /vF in the weak-coupling
limit U
 t.17 We have determined the correlation length � in
our model from the slopes of log�D��L� / t	 versus L. The
charge gap is obtained as the difference of ground-state en-
ergies extrapolated to the thermodynamic limit

�c = lim
L→�

�c�L� ,

�c�L� = �EL�1,1� + EL�− 1,− 1� − 2EL�0,0�	/2. �18�

Here EL�N↑ ,N↓� denotes the ground-state energy of a chain
of length L with N↑ up-spin and N↓ down-spin electrons
added or removed from the quarter-filled band, which can be
easily computed using the DMRG method. Figure 8�b�
shows �c / t vs �−1 for several values of U and V. We see that
�−1 varies linearly with �c for small gaps, while deviations
are apparent when the gap is large. The product ��c tends to
a universal value ��c�13.8t�9.76vF for �c→0 indepen-
dently of U and V. This agrees with the relation between �
and �c derived from Bethe ansatz results38 for the effective
spinless fermion model which corresponds to our model in
the limit U / t=� as V approaches 2t from above �see the
dashed line in Fig. 8�b�	.

It is also necessary to discuss the finite-size scaling of the
charge Drude weight in the vicinity of the metal-insulator
transition in more detail. In Fig. 9 we plot the charge Drude

weight D��L� as a function of inverse system length 1 /L for
U=10t and several values of V close to the critical value
Vc�2.74t determined in Ref. 30. If we perform a polynomial
fit in 1 /L, all results extrapolate to finite values for both
phases while an exponential fit is meaningless. Thus from
our numerical results alone, we would conclude that D� de-
creases smoothly as a function of V through the critical value
Vc�2.74t determined in Ref. 30 and vanishes only for
V�V�, where V� is clearly larger than Vc.

This failure of our finite-size analysis is easy to under-
stand. Obviously, if we assume a scaling behavior D��L�
�A exp�−L /�� in the critical region V�Vc of the insulating
phase and � diverges as V→Vc, we need to treat exponen-
tially large systems to observe the correct finite-size scaling
of D��L�. Therefore, one has to use much larger sizes than
the ones used here �up to L=60� to determine the phase
boundary from the extrapolated charge Drude weights. Un-
fortunately, it is very difficult to obtain accurate results for
larger periodic systems using DMRG. We note that D��L�
seems to be a convex function of 1 /L in the metallic phase
but a concave function in the insulating phase. Although this
finite-size behavior could be used as a criterion to distinguish
both phases in principle, it is not reliable generally as it does
not hold when V is kept fixed and U varies through the
critical value Uc. Moreover, this is a transient behavior for
intermediate values of 1 /L only as D��L��A exp�−L /�� is
also a convex function of 1 /L for large enough L�� in the
insulating phase.

The Luttinger parameter K� also extrapolates to a finite
value in the insulating phase if the available system sizes are
too small.30 Nevertheless, the direct calculation of K� from
the finite-size scaling of correlation functions allows one to
determine the metal-insulator phase boundary very accu-
rately because this approach can be applied for open bound-
ary conditions and thus with DMRG, one can simulate sys-
tems which are 1 to 2 orders of magnitude larger than with
periodic boundary conditions.

V. SUMMARY

We have studied the transport properties of the t-U-V ex-
tended Hubbard model at quarter filling by using the DMRG
technique combined with a variational principle for the
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FIG. 8. �Color online� �a� Semilog plot for the charge Drude
weight D� at U / t=10 as a function of the system size L. Lines are
exponential fits. �b� Charge gap �c vs inverse correlation length �−1

for U / t=10,9 ,8 ,7 and varying V. Solid lines are guides for the
eyes. The dashed line is obtained from the Bethe ansatz solution
�Ref. 38� in the limit U / t=� as V approaches 2t from above.
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FIG. 9. �Color online� �a� The charge Drude weight D� as a
function of inverse system length 1 /L at U / t=10 for various V in
the metallic phase �filled symbols, V	Vc�2.74t� and in the insu-
lating phase �open symbols, V�Vc�. Lines are polynomial fit.
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Drude weight. The contour map of the charge and spin Drude
weights has been determined in the parameter space of the
on-site Coulomb repulsion U and nearest-neighbor Coulomb
repulsion V. We have found that �i� both Drude weights de-
crease monotonically with increasing Coulomb repulsion, �ii�
the charge Drude weight is larger than the spin Drude weight
in the metallic phase �Luttinger liquid�, and �iii� the charge
Drude weight is discontinuous across the Kosterlitz-Thouless
transition from the metallic phase to the CDW insulating
phase.

We have also discussed the finite-size scaling and the ex-
trapolation to the thermodynamic limit of our numerical data.
In the insulating phase, we find a universal relation between
the charge gap and the correlation length which controls the
exponential decay of finite-size corrections to the charge
Drude weight. Unfortunately, we reach the conclusion that it

is difficult to determine the phase boundary of a metal-
insulator transition using the Drude weights calculated with
DMRG because this approach requires periodic boundary
conditions which considerably reduce the performance of
DMRG and thus the available system sizes for the finite-size
scaling analysis.
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